

Current Pool Pumps

Old Technology: AC induction motors

Typically run 50% efficient 65% best case

At half speed, efficiency drops off to about 25%

New Pumps

Permanent Magnet Synchronous Motors

The same technology as electric motor vehicles

- Controllable can vary the speed
- 90% efficient (at all speeds)
- Quiet as a whisper

Key Concept: Slower is Better

You can save money with a more efficient pump

But the real savings is slowing the pump down

Pump Affinity Law

SPEED (rpm) = FLOW (gpm)

 $SPEED (rpm) = Power^3 (kW)$

EXAMPLE: Reduce Speed (50%)

1/2 SPEED (rpm) = 1/2 gpm

1/2 SPEED (rpm) = 1/2 X 1/2 X 1/2 = 1/8 kW

The Cost Savings

$$kWh = $$$

1/2 speed = 1/2 gpm = 1/8 kWh = 1/8 \$

You need to move the same amount of water, so you will need to run the pump twice as long.

1/8 * 2 = 1/4\$ That's a 75% savings!

If you are spending \$120.00 per month, you can reduce it to \$30.00 per month. That's \$1080 per year!